
86

Chapter 6 Raspberry Pi and grovepi with Python: Sensors, actuators and interfaces

Capítulo 6 Raspberry Pi y grovepi con Python: Sensores, actuadores e interfaces

CORONA-SÁNCHEZ, Ernesto*1, NAMIGTLE-JIMENEZ, Jesús1,2, MASTACHE-MASTACHE, Jorge

Edmundo1,2 and LÓPEZ-RAMÍREZ, Roberto2

1Universidad de Ixtlahuaca, Facultad de Ingeniería
2TecNM/Tecnológico de Estudios Superiores de Jocotitlán

ID 1st Author: Ernesto, Corona-Sánchez / ORC ID: 0009-0004-8828-3400

ID 1st Co-author: Jesús, Namigtle-Jiménez / ORC ID: 0000-0002-0908-4592, CVU CONAHCYT ID:

624757

ID 2nd Co-author: Jorge Edmundo, Mastache-Mastache / ORC ID: 0000-0001-6104-6764, CVU

CONAHCYT ID: 544943

ID 3rd Co-author: Roberto, López-Ramírez / ORC ID: 0000-0001-8341-3684, CVU CONAHCYT ID:

233228

DOI: 10.35429/H.2023.5.86.110

E. Corona, J. Namigtle, J. Mastache and R. López

*jesus.namigtle@tesjo.edu.mx

R. López (AA.) Engineering and Architecture in the Northern part of the State of Mexico. Handbooks-TI-©ECORFAN-

Mexico, Estado de México, 2023

87

Abstract

Currently we have seen the launching and distribution of a wide variety of programmable boards, from

the well-known Arduino to boards such as Raspberry Pi, Orange Pi, SparkFun RedBoard Artemis, among

others. Each one of them presents differences not only in design but also in the language used to work

with them, memory capacity, processor type, etc. Another characteristic that distinguishes them is in the

extensions and complements such as hats, sensors and actuators that enhance their use. The cards are a

fundamental element in the development of projects focused on robotics, monitoring systems, IoT

technology applications to name a few, which is why this chapter will delve into one of the extensions

compatible with Raspberry Pi, GrovePi+. This add-on presents advantages when using humidity,

temperature, light, air quality sensors, as well as actuators of different types. In addition, graphical

interfaces will be implemented taking advantage of the Python3 distribution available in Raspberry Pi;

in this way, elements that maximize the use of the hat can be used. This with the purpose that the user

can understand and manipulate the types of ports available (analog and digital mainly), presenting the

Grove family modules from a didactic point of view.

Monitoring, GrovePi+, Raspberry Pi, Interfaces, Programming

Resumen

Actualmente se ha visto el lanzamiento y distribución de una gran variedad de tarjetas programables,

desde el reconocido Arduino hasta tarjetas como Raspberry Pi, Orange Pi, SparkFun RedBoard Artemis,

entre otras. Cada una de ellas presenta diferencias no sólo en el diseño sino también en el lenguaje

utilizado para trabajar con ellas, capacidad de memoria, tipo de procesador, etc. Otra característica que

las distinguen está en las extensiones y complementos como hats, sensores y actuadores que potencian

su uso. Las tarjetas son un elemento fundamental en el desarrollo de proyectos enfocados en robótica,

sistemas de monitoreo, aplicaciones tecnológicas IoT por mencionar algunas, es por ello que en este

capítulo se profundizará en una de las extensiones compatibles con Raspberry Pi, GrovePi+. Este

complemento presenta ventajas a la hora de utilizar sensores de humedad, temperatura, luz, calidad del

aire, así como actuadores de distinto tipo. Además, se implementarán interfaces gráficas aprovechando

que la distribución Python3 está disponible en Raspberry Pi; de esta forma se pueden utilizar elementos

que maximicen el uso del hat. Esto con la finalidad de que el usuario pueda entender y manipular los

tipos de puertos disponibles (analógicos y digitales principalmente), presentando los módulos de la

familia Grove desde un punto de vista didáctico.

Monitoreo, GrovePi+, Raspberry Pi, Interfaces, Programación

1 Introduction

Over the years, research in different areas of engineering has presented systems in which a programmable

card is indispensable, either for data acquisition and processing purposes, for a control phase, as a means

of communication with the cloud, etc. However, several cards have a high cost in the market and come

to need extensions, devices or add-ons that require specific libraries, present incompatibility or simply

consume a high amount of resources being undesirable the addition of new components. Therefore,

GrovePi+ being a Raspberry Pi compatible add-on can be a good option to work with modules of different

functions without exceeding the resources it has. It is a hat that provides analog, digital and serial ports

that are used to connect basic electronic components, as well as actuators linked to a single Python-based

library for manipulation. The purpose of this work is to show the user how to use some elements through

simple code segments providing enough tools to make small control systems.

Short introduction to Raspberry Pi

A Raspberry pi can be considered from the user's point of view, a kind of mini-computer that allows you

to perform various projects thanks to the functions it can provide. It consists of a board, a processor,

different types of pins and connection ports. This board, launched by the Raspberry Pi foundation (its

first model) in 2012 has had variants over time, however, it can be narrowed down into 2 models; A and

B. You can also find other models that although they can be differentiated by the size or the addition of

its keyboard (as for example the Raspberry Pi 400) maintain the same architecture in their models A and

/ or B.

88

Raspberry Pi OS or also known as Raspbian is the official operating system of the board. This

Linux distro (Linux distribution) is based on Debian, optimized to run on ARM hardware.

Figure 1 Raspberry Pi 3B+ (Kurniawan A.)

Raspberry Pi hardware

The models that provide the most features to the user are models A and B, and the main difference

between them is in the USB connection. Model A versions consume less power and do not have an

Ethernet port, unlike model B versions which do.

A standard Raspberry board consists of the following components:

 RAM memory.

 Processor(CPU)

 Graphics Processor (GPU)

 Ethernet connection.

 GPIO interface

 XBEE socket (wireless communication)

 UART (Serial Interface)

 Power supply connection.

 Connection for external hardware (microSD memory)

Where, the microSD memory is necessary for storage and booting of the Pi board. From the point

of view of a Windows user the microSD would be the hard disk of the PC.Los Distintos Modelos de

Raspberry Pi.

Table 1 presents a summary of the various versions and models of the Raspberry Pi board,

highlighting the improvement that has brought model after model, positioning this board as one of the

most versatile and economical in the market.

89

Table 1 Raspberry Pi boards comparison

Model RPI 3 RPI2 RPI B+ RPI A+ RPI

ZERO

RPI B COMPUTE

Characteristics Performance

/Wi-Fi

/Bluetooth/

Ethernet

Performance

/Ethernet

Ethernet Price Price

/Size

Original Integration

/eMMC

Price $35 $35 $25 $20 $5+ $25 $40

Processor* BCM2837

quad core

Linux

ARMv7

BCM2836

quad core

Linux

ARMv7

BCM2835

Linux

ARMv6

BCM2835

Linux

ARMv6

BCM2835

Linux

ARMv6

BCM2835

Linux

ARMv6

BCM2835

Linux

ARMv6

Speed 1.2GHz 500MHz 700MHz 700MHz 1GHz 700MHz 700MHz

Memory 1GB 1GB 512MB 256MB 512MB 512MB 512MB

Typical Power 2.5W (up to

6.5W)

2.5W (up to

4.1W)

1W (up to

1.5W)

1W (up to

1.5W)

1W (up to

1.5W)

1W (up to

1.5W)

1W (up to

1.5W)

USB Ports 4 4 4 1 1OTG 2 via header

Ethernet 10/100 Mbps

Wi-Fi and

Bluetooth

10/100

Mbps

10/100

Mbps

none

none

10/100

Mbps

none

Storage micro-SD micro-SD micro-SD micro-SD micro-SD SO 4GB eMMC

Video HDMI

Composite

HDMI

Composite

HDMI

Composite

HDMI

Composite

mini-

HDMI

composite

HDMI

RCA video

HDMI via

edge

TV DAC via

edge

Audio HDMI digital audio and analog stereo via a 3.5mm Jack (where available)

GPU Dual Core VideoCore TV Multimedia Co-Processor at 250MHz (24 GFLOPS)

Camera (CSI) yes yes yes yes no yes CSI x 2 via

edge

Display (DSI) yes yes yes yes no yes DSI X 2 via

edge

GPIO header 40 pins 40 pins 40 pins 40 pins 40 pins 26 pins 48 pins via

edge

Usage General-

purpose

computing

and

networking.

High-

performance

interfacing.

Video

streaming

General-

purpose

computing.

High-

performance

interfacing.

Video

streaming

General-

purpose

computing.

Internet

connected

host. Video

streaming.

Low cost

general-

purpose

computing.

Standalone

electronics

interfacing

applications.

Low cost

small

profile

standalone

electronics

interfacing

projects.

General-

purpose

legacy

applications.

Internet

connected

host.

Suitable for

plugin into

user-created

PCB´s using

a DDR2

SODIMM

connector.

Open-source

breakout

board

available.

(Molloy, D., 2019)

Raspbian for robots

Raspbian for Robots is a Raspbian-based operating system created by the company Dexter Industries,

intended for Raspberry Pi-based robot kits. This OS contains the embedded software to connect to

GoPiGo, BrickPi, GrovePi or Arduberry and program. Programming environments such as Scratch and

Python are already available with several test scripts ready to just run.

Grovepi+

Grove Pi+ is either an add-on or a frame/hat designed for the Raspberry Pi board, where the

communication between the two is via an I2C interface. All GrovePi+ modules connect to universal

Grove connectors consisting of 4-pin cables. Functional Grove modules with analog and digital signals

are connected directly to the ATMEGA328 microcontroller in GrovePi. The microcontroller acts as an

interpreter between the Raspberry Pi and the Grove sensors that send, receive and execute commands

sent by Raspberry Pi.

90

In addition, Grove Pi allows Raspberry Pi to directly access some Grove sensors since Raspberry

Pi has an I2C bus and a serial bus. The latter can be directly connected to the sensors through the I2C

ports and the USART port.

This is a hat that has gained relevance in recent years due to its use in various projects such as

weather stations (Bell, C., 2021) whose main modules are based on the Grove family of sensors from

seeed studio. Among other noteworthy applications is the air quality monitoring system implemented

with IoT (Balasubramaniyan, C., 2016), a project that managed to effectively monitor the air remotely

and thus raise the possibility of covering a larger area in future work.

In the different projects that have been carried out with this hat, the ease with which the different

Grove modules are connected and managed has been observed. Deepening in the code part, Python turns

out to be the language with which it can be better interacted allowing that it does not have difficulties

with the handling of sensors and actuators.

It is important to emphasize that it is thanks to the Raspbian for Robots distribution that it is

possible to use GrovePi+, since it is impossible to download the repository containing the dependencies

and libraries for its use from other distributions.

GrovePi+ Port Layout

Image 2 shows the way the ports are distributed and the type of each one of them. This hat provides

digital (7), analog (3), I2C (3), Grove serial (1), Raspberry Pi serial (1) ports in addition to the power

(5v) and ground (GND) pins.

Between the ports already mentioned you can also find 2 rows of pins (26), these pins can be used

normally as if you were only working with Raspberry Pi, so you get the most out of both Raspberry and

Grove Pi+ pins.

Figure 2 GrovePi+ ports (Dexter Industries)

91

Python

Raspberry Pi has generally been seen to be used in applications based on Python, an open source

programming language with a short history when talking about GrovePi+.

Brief historical context

Python is a programming language widely used in web applications, software development, data

science and machine learning (ML). Some of the reasons for using it are its efficiency and ease of

learning, in addition to being able to run on several different platforms. Created by Guido Van Rossum

in 1989 and released its first version in 1991 (Python 0.9.0), it included notable features such as some

data types and error handling functions.

The second version (Python 1.0), released in 1994, contained new functions related to data list

processing, assignment, filtering and reduction. This was followed by Python 2.0 in 2000, which

provided the programmer with support for Unicode characters and a shorter way to traverse a list. The

third version (Python 3.0) was released in December 2008, providing among the most outstanding

improvements the print function, support for number division and error handling.

It is a language that has not yet been fully exploited in addition to having a rising popularity in

recent years, and it is not for less, since it has been used in various projects involved with IoT. With this,

development boards based on this language have raised alternatives according to the needs of users.

Among the works that relate the use of the language, we can find the guide for the management

of programmable cards (Gonzales, R., 2021) supported by JavaScript, development and management of

prototypes such as the FoamPi (Wright, H. C., Cameron, D. D., & Ryan, A. J.) whose objective is

temperature monitoring of chemicals and even, it has been implemented in the field of environmental

engineering by developing a software assembled in Python (Mg, I. Y. M. M. L. 2019) that helped to

maintain the level of health in the ecosystem studied using the Tennat methodology. So, taking into

account this kind of 'projects, Python still has a lot to offer in different research areas.

Main characteristics of the language

Python is an interpreted language, that is, it directly executes the code line by line. If there are errors in

the program, its execution is stopped. This makes it easier for the programmer to find irregularities. It is

a dynamically typed language, so it is not necessary to define the type of variable when writing the code

since Python automatically determines what type it refers to at runtime. It is a high-level language, so

the programmer does not have to worry about its underlying functionalities such as architecture and

memory management. Object-oriented, Python considers everything as an object, but it can also support

other types of programming.

IDE Thonny

Thonny is one of the IDEs originally born to program in Python on a computer that has been gradually

incorporating support for Micropython. It allows working with boards such as Micro Bit, and those

containing the ESP8266 and ESP32. It can also be used to program in Circuit Python.

This environment is also very easy to use and has more options and tools than other IDE's,

although many of them work only when using the PC version of Python.

A very interesting feature included in the latest version is the possibility to record and update the

board firmware internally from Thonny without using ESPTOOL.

It is an open source development created at the University of Tartu in Estonia and is very active,

so it will surely continue to introduce new features as time goes by. It is available for Windows, Mac and

Linux.

92

Talking a little bit about the workspace view, in image 3 you can see the basic elements that

compose the development environment. In this view you can locate the main icons; button to create a

new program, open files, save button, script execution, debug button and sub-functions (skip, enter, exit

and resume) as well as the stop/restart button.

In addition to the submenus (file, edit, view, run, tools and help), Thonny provides a wizard that

helps the user to improve the structure of the scripts he develops, providing recommendations that can

improve the debugging of the program.

The console is fundamental in environments intended to execute programming codes and Thonny

is not far behind, as can be seen in image 3.

Figure 3 Thonny development environment

GrovePi

In order to work with the GrovePi+ hat it is necessary to install an exclusive library for it. Using the

Raspberry Pi command terminal.

This library is mainly used for handling sensors, since GrovePi+ has several ports it is necessary

to install it to be able to correctly manipulate each one of them.

Initially, the GrovePi+ shell must be placed on the Raspberry Pi. Then start the command terminal

and type the command 1. This command creates a folder where the library will be stored.

mkdir ~/Dexter

Command 1. Creation of main folder

The newly created folder is then entered using the following line as specified in command 2.

cd /home/pi/Dexter

Command 2. Access to the newly created folder

For the next step you must have an active connection to an internet network, since the GrovePi

repository provided by Git counter in command 3 will be downloaded. When the download is finished,

a new folder named GrovePi will be created.

git clone https://github.com/DexterInd/GrovePi

Command 3. Download from grovepi repository

93

Then, the "Script" folder is accessed as shown in command 4.

cd /home/pi/Dexter/GrovePi/Script

Command 4. Access to the script folder.

The next step is to start the installation script with the command 5, where the packages used by

GrovePi+ will be downloaded, confirm by pressing "y" and wait for the end of the download. At the end

of the download the Raspberry Pi will restart.

bash ./update_grovepi.sh

Command 5. Installation of dependencies

Installation

To check that the script was installed correctly you must check if the Raspberry Pi is able to detect the

GrovePi+ hat by typing the command 6.

sudo i2cdetect -y 1

Command 6. Check

The way to check that the installation was successful is to observe an "04" in the output as shown

in image 4. The grovepi library is essential because it is through it that the GrovePi+ ports can be used,

allowing analog and digital readings, serial communications, and thus take advantage of the Python

language with instructions that are very reminiscent of the Arduino syntax.

Figure 4 GrovePi+ detection

Tkinter

Tkinter is a library that provides the user with a platform-independent set of windowing tools. It uses the

tkinter package and its extension tkinter.tix in addition to the tkinter.ttk modules. Where, the tkinter

package can be seen as an object-oriented layer on top of tcl/tk. It is worth noting that tkinter is already

included in Python 3 integrated in the Raspian for Robots operating system.

Some of the generalities of this library are the following:

tcl is a dynamic interpreted programming language like Python.

94

Tk is a package implemented in C that adds custom commands to create and manipulate GUI

widgets.

ttk is a new family of Tk widgets that offers a better experience on different platforms.

Having understood the main function of the Liberian tkinter, in this section some simple examples

of how to make interfaces from the Thonny IDE will be made.

The first example is the random number generator. For this, the tkinter and Random libraries must

be included (the latter is necessary to be able to generate the numbers).

As can be seen in code segment 1, once the libraries are placed in the header there is a function

called "update", responsible for generating the number (between 1 and 1000), in addition to publishing

it in the interface (line 7).

It is also observed in line 11 the command that repeats the function in a tempo of 500ms, it is

thanks to this instruction that the number change can be shown in the interface. If it is not specified, it is

not updated on the screen.

It is important to say that in the update function, the line text2.config contains different

parameters; text, which is intended to place a string type character string, font, which serves to detail the

font type and size that will have the text, bg, which specifies the background color and foreground to

detail the color of the text font. These parameters are fundamental in the design of an interface, so the

user must take each and every one of them into account.

From line 13 to 17 you can find the creation of the main window called window, named

"Generator", the height and width dimensions, as well as the background color, which in this case is

Orchid4.

Another important part of the main interface are the Labels, generally used to display messages

in a certain space of the main window (lines 19 to 23, 25 and 26) and which also need parameters for

their design.

Buttons are also an essential part of the interfaces since they can be used to display customized

functions; from lines 28 to 34 there is a button with the design parameters that were used for the case of

window and labels, however, 2 new fields can be found; border and command.

Border emphasizes the design of the button and command points to the "update" function. In short

border customizes the width of the button border and command the function that the program will

perform when the button is clicked.

Code segment 1. Tkinter window

 1 import tkinter as tk

2 import random

3

4 def actualizar():

5 num_al=random.randint(1, 1000)

6 texto2.config(text=”” + str(num_al),

7 font=(“Arial”, 14),

8 bg=”orchid4”,

9 foreground=”white”)

10 ventana.after(500, actualizar)

11

12 ventana=tk.Tk()

13 ventana.title(“Generator”)

14 ventana.config(width=250,

15 height=200,

16 bg=”orchid4”)

17

18 texto1=tk.Label(text=”Number: ”,

19 font=(“Arial”, 14),

20 bg=”orchid4”,

95

21 foreground=”white”)

22 texto1.place(x=70, y=70)

23

24 texto2=tk.Label(text=”0”)

25 texto2.place(x=150, y=70)

26

27 Boton=tk.Button(ventana,

28 text=”Close”,

28 command= ventana.destroy,

29 bg=”darkgoldenrod”,

30 foreground=”white”,

31 border=0)

32 Boton.place(x=90, y=150)

33

34 ventana.after(500, actualizar)

35 ventana.mainloop()

In this way, the result of compiling the program can be seen in image 5. In it, 3 windows can be

distinguished, which show the different values carried out by the generator. This does not mean that code

segment 1 creates 3 windows, but only 1 window, and the values are taken after the time interval specified

in the code (500 ms).

Figurer 5 Final screen (3 transitions)

Having shown a way to display a random value in a small interface in tkinter, the next step is to

use the analog channels of the GrovePi+ in conjunction with a graphical window.

For this example, we need to connect two Grove modules; the light sensor and the potentiometer

(also known as angle rotary sensor). Where the potentiometer will be connected to the analog port A0

and the light sensor to port A1 of the GrovePi+.

As presented in code segment 2, the potentiometer is identified as potentiometer = 0 and

light_sensor = 1 referencing the GrovePi+ ports. For the proposed program we again make use of the

grovepi library, in addition to importing all the library modules for the interface.

The after method is used again in order to carry out the update for the potentiometer and light

sensor values. The functions def light and def pot are in charge of obtaining the values of each one.

Unlike the first interface that was made in this example we will implement the use of LabelFrame,

an element provided by tkinter to create custom frames. From line 26 to 44, 2 LabelFrames are coded

with their respective geometric editor (grid method), however, it is obvious at first glance that it has not

been fully customized by the parameters of each label. This will mark the limits of the frames with the

main window of the interface.

Other parameters that can be highlighted from the code are padx and pady. These elements

determine the size of the frame inside the main (root) window.

96

Code segment 2. Interface focused on variables

 1 import tkinter as tk

2 from tkinter import *

3

4 potentiometer=0

5 light_sensor=1

6

7 def luz():

8 val1=grovepi.analogRead(light_sensor)

9 texto3=Label(contenedor1,text=”” + str(val1)).place(x=10, y=15)

10 contenedor1.after(500, luz)

11

12 def pot():

13 val2=grovepi.analogRead(potentiometer)

14 texto4=Label(contenedor2, text=”” + str(val2)).place(x=10,y=15)

15 contenedor2.after(500, pot)

16

17 root=tk.Tk()

18 root.title(“Main Interfaz”)

19 root.config(bg= “orchid4”)

20

21 contenedor1=LabelFrame(root,

22 text= “Light Sensor”,

23 fg= “Blue”,

24 padx=65,

25 pady=65)

26 contenedor1.grid(row=0,

27 column=0,

28 padx=15,

29 pady=15)

30 contenedor2=LabelFrame(root,

31 text= “potentiometer”,

32 fg= “Blue”,

33 padx=65,

34 pady=65)

35 contenedor2.grid(row=0,

36 column=1,

37 padx=15,

38 pady=15)

39

40 texto1=tk.Label(contenedor1,

41 text= “Value: ”).pack()

42 texto3=tk.Label(contenedor1,

43 text= “0”).place(x=10, y=15)

44 texto2=tk.Label(contenedor2,

45 text= “Value: ”).pack()

46 texto4=tk.Label(contenedor2,

47 text= “0”).place(x=10, y=15)

48

49 root.after(500, luz)

50 root.after(500, pot)

51 root.mainloop()

Matplotlib

It is a library that helps the user to plot data in figures (or Figure), it contains one or more Axes (Area

where the points can be specified in terms of XY or XYZ coordinates in case of 3D graphics) and a

variety of methods that can give dynamism to the graphics. The easiest way to create a figure with axes

is using pyplot.subplots where it is important to note that in order to display the figure you must call the

plt.show() method.

The above interfaces can be complemented with graphics by using the matplotlib library.

However, the Raspbian for Robots operating system lacks dependencies that slow down the installation

of the library through pip, that is why we choose to use an alternative method as shown in command 7.

97

This command must be run from the terminal, if you try to install from the Thonny package

manager is very likely not allowed and only manages to remove dependencies linked to the grovepi

library.

sudo apt install python3-matplotlib
Command 7 Matplotlib installation

For this circuit you need the potentiometer and the light sensor again, the potentiometer must be

connected to channel A0 and the light sensor to channel A1 of GrovePi+ as shown in image 6.

Remembering that GrovePi+ contains 3 analog ports you can change the connection order of the modules

(if required), keeping in mind that you must additionally change the configuration in code segment 3.

From figure 6, as it is the first connection diagram seen in this work, it is necessary to mention

that the color code was established according to the Grove Cable.

Figure 6 Connection diagram

Once the compatible library has been downloaded, the program is presented in code segment 4.

It has the function of plotting the readings of a potentiometer and the light sensor (grove rotary angle

sensor & grove light sensor).

In the code you can see the different sections that conform it: functions in charge of providing the

sensor readings and functions that draw the lines of the graph according to the value obtained from the

code blocks read_pot and luminosidad.

The way in which the graphs will be presented will be by separate windows, in this case we do

not use Tkinter, only Matplotlib. It should be noted that the program is comprised of 3 instructions that,

enclosed in the while loop, carry out the plotting of the 2D lines in a continuous manner.

Going deeper into the functions grafico(frame) and grafico1(frame), the append method is used

as the main element in the assignment of values to the x_data, y_data, x1_data and y1_data arrays, which

makes efficient data processing possible. These functions are a fundamental part of the trafication process

since lines 56 and 57 contain the instructions that make possible the update of values;

FuncAnimation(figure, graph, interval=400) and FuncAnimation(figure1, graph1, interval=400) besides

containing the same update interval (400 ms) point to their respective space or "plot" and to the function

of the variable they represent (grafico focuses on the potentiometer and grafico1 on the light sensor).

98

Code segment 3 Creation of graphics

 1 from tkinter import *import time

2 import grovepi

3 import matplotlib.pyplot as plt

4 from datetime import datetime

5 from matplotlib import pyplot

6 from matplotlib.animation import FuncAnimation

7

8 plt.style.use('ggplot')

9 x_data=[]

10 y_data=[]

11 x1_data=[]

12 y1_data=[]

13

14 figure= pyplot.figure()

15 line, =pyplot.plot_date(x_data, y_data, '-')

16

17 figure1= pyplot.figure()

18 line1, =pyplot.plot_date(x_data, y1_data, '-')

19

20 potentiometer = 0

21 light_sensor = 1

22

23 grovepi.pinMode(potentiometer,"INPUT")

24 grovepi.pinMode(light_sensor,"INPUT")

25

26 time.sleep(5)

27

28 def grafico(frame):

29 x_data.append(datetime.now())

30 pase=lectura_pot()

31 y_data.append(pase)

32 line.set_data(x_data, y_data)

33 figure.gca().relim()

34 figure.gca().autoscale_view()

35 return line,

36

37 def grafico1(frame):

38 x1_data.append(datetime.now())

39 sensorluminoso=luminosidad()

40 y1_data.append(sensorluminoso)

41 line1.set_data(x1_data, y1_data)

42 figure1.gca().relim()

43 figure1.gca().autoscale_view()

44 return line1,

45

46 def lectura_pot():

47 sensor_value = grovepi.analogRead(potentiometer)

48 return(sensor_value)

49

50 def luminosidad():

51 sensor_value1 = grovepi.analogRead(light_sensor)

52 return (sensor_value1)

53

54 while True:

55 try:

56 animation2= FuncAnimation(figure, grafico, interval=400)

57 animation= FuncAnimation(figure1, grafico1, interval=400)

58 pyplot.show()

59 except IOError:

60 print ("Error")

99

XlsxWriter

XlsxWriter is an open source Python API for writing files in the Excel 2007+ XLSX file format. With

the API, you can write text, formulas, numbers and hyperlinks to multiple worksheets. In addition, the

API allows you to insert charts, merge cells, format cells, apply filters, validate data, insert

PNG/JPEG/BMP/WMF/EMF Figures, use multi-format strings and more.

XlsxWriter provides more Excel functions than any of the alternative Python modules. In

addition, it provides a high accuracy rate when creating new Excel files; in most cases, files produced

with XlsxWriter are 100% equivalent to files produced by Excel.

From this description, in this section the "Recording" of data implementing an analog sensor will

be performed.

Initially it is necessary to install the library, for this we use pip, with the command 8 executed

from the terminal.

pip install XlsxWriter

Command 8 Xlsxwriter installation

The sensor to be used will be the temperature sensor as shown in Figure 7.

Figure 7 Connection diagram

Once the connection has been made, the program for this activity is the one seen in code segment

4. It is in this code that a class is presented that has the objective of obtaining values from various sensors,

thus providing an alternative to the usual grovepi.analogRead() instruction provided by the grovepi

library. Highlighting that it favors the compilation of the program in terms of time.

Some of the lines that are indispensable in the elaboration of the script are described:

The XlsWriter library requires specific syntax for file creation, saving and saving. Line 11

describes how to create the file and gives the option to name it. Line 12 adds spreadsheets to the file.

Line 15 contains an instruction which involves the execution of code segment 5 yielding the

temperature value.

To store data the instruction hoja.write can be displayed in lines 18 and 19 and as arguments the

location (row, column, data to be stored).

100

In order to save the file, line 25 contains the instruction archivo.close().

The for loop performs the storage of the temperature value 50 times, therefore, the final file will

contain 2 rows; one for the timestamp and one for the temperature value.

Code segment 4. Data storage with Xlsxwriter

 1 import grovepi

2 import dht11_modulo

3 import time

4 import xlsxwriter

5

6 i=0

7 h=0

8 temperatura=0

9 grovepi.pinMode(temperatura,"INPUT")

10

11 archivo=xlsxwriter.Workbook('GrabadoDeLecturas.xlsx')

12 hoja=archivo.add_worksheet()

13

14 for c in range (0,50):

15 val2=dht11_modulo.lectura_pot(temperatura)

16 hora=time.strftime("%X")

17 hoja.write(i,1,val2)

18 hoja.write(h,0,hora)

19 print(val2)

20 i=i+1

21 h=h+1

22 time.sleep(3)

23

24 archivo.close()

Another thing that can be added from the class of code segment 5 is the versatility of adding or

changing sensors in this section, eliminating a possible problem (if it is the case of changing the type of

sensor) of having to resort to the main program and look for the lines to change it.

For this it is more advisable to have a class intended only for sensors.

Code segment 5 Class that obtains sensor readings

 1 import grovepi

2 import math

3 import time

4

5 def lectura_hummodulo():

6 sensor_value2= grovepi.analogRead(moisture_sensor)

7 return (sensor_value2)

8

9 def lectura_lummodulo():

10 sensor_value1= grovepi.analogRead(light_sensor)

11 return (sensor_value1)

12

13 def lectura_pot():

14 sensor_value= grovepi.analogRead(temperatura)

15 return (sensor_value)

Figure 8 shows a first execution of the code in which the temperature values can be observed in

the console, in order to check the data with those of the final file. Since the main program only takes 50

values, it provides a way to check the veracity of the data by comparing the data printed in the Thonny

console with those saved in the Excel file.

101

Figure 8 Console result

Now it is time to open the generated file, in order to find it just open the folder where the main

program is hosted. Reviewing the file you can find the data of the Figure 9.

The type of data with which each reading was saved are 2; time and string. This feature must be

taken into account because, if you plan to use this data to insert graphs or perform calculations, the string

data belonging to the temperature (Column B) will have to be converted into an integer or floating data

type. In this way it is possible to develop a tool very similar to Data Streamer (Excel add-in whose

function is to capture data acquired by the Arduino in serial form).

Figure 9 View to final file

102

Circuits with actuators and other components

Relay

This is a basic circuit whose objective is to demonstrate the use of the relay. It is important to emphasize

that in case of not having the Grove module, a generic relay can replace it without any problem, although

it is necessary to have a Grove Cable for a correct communication with the GrovePi+ hat.

As shown in Figure 10, the relay must be connected to port D4 of GrovePi+ and the bulb must be open

in one of its two connections.

Figure 10 Connection diagram

In code segment 6 you can see how the program only outputs values of 0 and 1 (0v and 5v) for 2

second intervals. 2 seconds the relay will let the light bulb turn on and 2 seconds will turn it off in an

infinite loop thanks to the while loop.

Despite being a relatively short code, it has the virtue of being very understandable as if it were

an Arduino. It can be noticed that the number of libraries to use are much less than in previous circuits.

And it could even be very easily related to a switch on and off an LED. The instruction that allows this

state switching is located in line 10 and 14 through grovepi.digitalWrite().

103

Code segment 6 Use of the relay module

 1 import time

2 import grovepi

3

4 relay = 4

5

6 grovepi.pinMode(relay,"OUTPUT")

7

8 while True:

9 try:

10 grovepi.digitalWrite(relay,1)

11 print ("on")

12 time.sleep(2)

13

14 grovepi.digitalWrite(relay,0)

15 print ("off")

16 time.sleep(2)

17

18 except KeyboardInterrupt:

19 grovepi.digitalWrite(relay,0)

20 break

21 except IOError:

22 print ("Error")

PWM

The PWM pulse has several uses, from speed control of a motor to a variable frequency drive and even

being part of a digital PID controller. That is why in this section we present a simple code that

demonstrates its operation using the Grove led pack.

The connection of this circuit is limited to use a single module, being a PWM it is important to

consider using a digital port of the GrovePi+ with the ability to throw a pulse of this type. As can be seen

in Figure 11, port D5 is the one chosen.

Figure 11 Connection diagram

As for the program, code segment 7 provides a quick way to display the PWM by means of 2 for

loops. With them it will be possible to observe in the physical assembly how the LED changes the

brightness level continuously up and down thanks to the described while loop.

It should be remembered that a PWM pulse is between values from 0 to 255, although the changes

are visible in shorter values and with longer delays, that is why the voltage will only be varying with

values between 0 and 20.

104

Code segment 7 PWM operation

 1 import time

2 from grovepi import *

3

4 led = 5

5 z=0

6 pinMode(led,"OUTPUT")

7

8 while True:

9 for i in range(0,20):

10 z+=1

11 analogWrite(led,z)

12 print(z)

13 time.sleep(0.1)

14 for j in range(0,20):

15 z-=1

16 analogWrite(led,z)

17 print(z)

18 time.sleep(0.1)

Buzzer

For this circuit we will make use of 3 components, the buzzer module, a button and the led pack. Each

time the button is pressed, the buzzer will have to emit sound and at the same time the led will have to

be in high state.

In the diagram of Figure 12 it can be seen how only digital channels are used due to the nature of

the modules to be used. The buzzer must be connected to channel D8, the led to D4 and the button to D3.

Figure 12 Connection diagram

In the code segment 8 above you can see how the while loop encompasses the operation of the

circuit by means of a conditional if-else. The if key compares if the input status coming from the button

is high (button pressed), if it is true both the buzzer and the led will be activated.

105

Code segment 8. Control of the buzzer module

 1 import time

2 import grovepi

3

4 buzzer = 8

5 button = 3

6 led = 4

7

8

9 grovepi.pinMode(button,"INPUT")

10 grovepi.pinMode(buzzer,"OUTPUT")

11 grovepi.pinMode(led,"OUTPUT")

12

13 while True:

14 try:

15 if(grovepi.digitalRead(button)==1):

16 grovepi.digitalWrite(buzzer,1)

17 grovepi.digitalWrite(led,1)

18 else:

19 grovepi.digitalWrite(buzzer,0)

20 grovepi.digitalWrite(led,0)

21

22 except IOError:

23 print ("Error")

CD motor control

For this circuit another electrical component is presented, the transistor. Since the motor to be used is

one of 12V and is of direct current, it is required to compensate the consumption current, that is why the

tip31C will be used taking into account that it is a BJT in Darlington arrangement.

As can be seen in Figure 13, the circuit requires the following components;

 GrovePi+

 Protoboard.

 Grove Temperature Sensor v1.2

 Resistor 10k

 Tip31C

 Motor 12v DC

 12v charger / Voltage source.

The ports to be used are A0 and D4.

106

Figure 13 Connection diagram

According to code segment 9, the motor will be triggered every time the temperature sensor

reaches values above 20° C in addition to printing the current value being detected on the console.

A while loop is used in this case for constant temperature monitoring.

Code segment 9 DC motor control

 1 import time

2 import grovepi

3 from grovepi import *

4

5 led = 4

6 temperature=0

7

8 pinMode(led,"OUTPUT")

9 pinMode(temperature,"INPUT")

10

11 while True:

12 val=grovepi.temp(temperature,'1.2')

13 print(val)

14 if(grovepi.temp(temperature,'1.2')>20):

15 analogWrite(led,255)

16 else:

17 analogWrite(led,0)

Grove moisture sensor

This is a circuit widely used as far as GrovePi+ is concerned, since only the soil moisture sensor and the

base program provided by Dexter Industries are needed.

Since it is an analog sensor, it can be used in any of the 3 ports provided by the GrovePi+, in this

case the A0 channel will be used as shown in Figure 14.

One of the things to keep in mind about the humidity sensor is that when placing it in the plant,

care must be taken not to completely submerge the module, respecting the division between the electrodes

and the connection port.

107

Figure 14 Connection diagram

Returning to the interfaces, this monitoring will be complemented with a small window in which

the value recorded by the humidity sensor can be observed (code segment 10). So at this point the

structure of the program can be repetitive since the bases of the potentiometer and light sensor interface

are taken. For this interface only 1 single label (line 19) will be taken as a reference.

In code segment 10 there is also a block that involves the use of Figures. Being the first time that

these design elements are used in this work, it is important to keep in mind that both the format of the

illustrations and their dimensions must be respected in order not to generate irregularities in the final

window. As for the format, the ideal format to work with is the jpg, while the dimensions may vary

depending on the measures assigned to the main window (root), if the Figure is larger in resolution

compared to the main interface, the latter will be covered by the Figure to be placed on top of any element

(buttons, frames or labels). If the format is not the right one, compilation errors will occur or it will

simply not be displayed in the window. In the code, lines 36, 37 and 38 load an illustration that will serve

as an icon to give a better presentation to the window. The Figure is instantiated with the variable "img"

and positioned with the function place().

Code Segment 10 Moisture monitoring

 1 import tkinter as tk

2 from tkinter import *

3 import grovepi

4

5 hum=0

6

7 grovepi.pinMode(hum,"INPUT")

8

9 def humedad():

10 val1 = grovepi.analogRead(hum)

11 texto3=Label(contenedor1,

12 text=""+ str(val1)).place(x=10,y=15)

13 contenedor1.after(500, humedad)

14

15 root=tk.Tk()

16 root.title("Plant")

17 root.config(bg="orchid4")

18

19 contenedor1=LabelFrame(root,

20 text="Soil Moisture",

21 fg="blue",

22 padx=65,

23 pady=65,)

24 contenedor1.grid(row=0,

25 column=0,

26 padx=15,

27 pady=15)

108

28

29 texto1=tk.Label(contenedor1,

30 text="Value: ").pack()

31

32 texto3=tk.Label(contenedor1,

33 text="0").place(x=10,y=15)

34

35 img=tk.PhotoFigure(file="hum.png")

36 lbimg=tk.Label(root, Figure=img)

37 lbimg.place(x=80,y=40)

38

39 root.after(500, humedad)

40 root.mainloop()

It is important to mention that the value presented in Figure 15 is for an unwatered plant. In this

way we have a reference value with which to make a comparison later on.

Figure 15 Window for plant monitoring

When the plant is irrigated, in Figure 16 the value changes to 626 obtaining a very small change

for the range of values that the sensor comprises (0 to 1024). This circuit has possibilities to be

complemented with a DC motor that has the function of a water pump with the help of the relay, thus

implementing the automatic control depending on the state of the plant

Figure 16 Humidity level after adding water

109

Acknowledgments

This paper would not have been possible without the support of the Universidad de Ixtlahuaca CUI and

the TecNM campus Jocotitlán, who mainly provided the material seen during this work.

Conclusions

During the present work the use of different Grove modules was approached, with this it was possible to

implement both the control and the visualization through simple graphical interfaces taking advantage of

the benefits offered by Python. Implementing analog sensors with the graphical windows represents an

alternative for similar desktop applications, demonstrating that the graphics have a relatively fast update

time, the ease of programming the control of the components and the wide variety of libraries that Python

has, allowing the addition of more features without aggressively consuming Raspberry Pi resources.

In terms of programming, the grovepi library is of great help to the user by providing

understandable instruction lines that allow manipulating different actuators as can be seen in the motor

control circuit on CD. In conclusion, the use of GrovePi+ is a suitable alternative to make visualization

and control interfaces that depending on the robustness of the system needed by the user, the use of the

different ports and Python will be less effort compared to other hats that work with C programming.

References

¿Qué es Python? - Explicación del lenguaje Python - AWS. (n.d.). Amazon Web Services, Inc.

https://aws.amazon.com/es/what-is/python/

Anicai, C. y Shakir, MZ (marzo de 2023). IoT and Machine Learning Enabled Estimation of Health

Indicators from Ambient Data. IEEE. https://doi.org/10.1109/WCNC55385.2023.10119030 En 2023,

IEEE Wireless Communications and Networking Conference (WCNC) (págs. 1-6). IEEE.

Balasubramaniyan, C., & Manivannan, D. (2016). IoT Enabled Air Quality Monitoring System (AQMS)

using Raspberry Pi. Indian Journal of Science and Technology, 9(39).

https://doi.org/10.17485/ijst/2016/v9i39/90414

Bell, C. (2021). Beginning IoT projects: Breadboard-less Electronic Projects. Apress.

Creating, viewing, and saving Matplotlib Figures — Matplotlib 3.7.2 documentation. (n.d.).

https://matplotlib.org/stable/users/explain/figures.html#figure-explanation

D BÜCH, D., B., & M ESCH, M., E. (2023). A Testbed for Smart City Applications and Architectures.

IEEE. https://doi.org/10.1109/COINS57856.2023.10189229. In 2023, International Conference on

Omni-layer Intelligent Systems (COINS) (págs. 1-6). IEEE.

Getting Started with Ubuntu Core for Raspberry Pi 3. (n.d.). (n.p.): PE

Gonzalez, R. (2021, December 15). Guía para manejo de tarjetas programables con Python y JavaScript

para Internet de las Cosas. URI: http://repositorio.uts.edu.co:8080/xmlui/handle/123456789/8235

GrovePi Port description. (2017, March 21). Dexter Industries.

https://www.dexterindustries.com/GrovePi/engineering/port-description/

Ltd, A. P. (2023). API Python de código abierto para hojas de cálculo de Google crear y compartir hojas

de cálculo. Aspose Pty. Ltd.

https://products.fileformat.com/es/spreadsheet/python/xlsxwriter/#:~:text=XlsxWriter%20es%20una%

20API%20de,en%20varias%20hojas%20de%20trabajo.

Mg, I. Y. M. L. (2019, August 1). Determinación del caudal Ecológico en la Microcuenca del Río Cutuchi

mediante el método de Tennant en Python, periodo 1988 – 2014.

http://repositorio.utc.edu.ec/handle/27000/6107

https://ieeexplore.ieee.org/xpl/conhome/10118584/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10189217/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10189217/proceeding
http://repositorio.uts.edu.co:8080/xmlui/handle/123456789/8235
https://products.fileformat.com/es/spreadsheet/python/xlsxwriter/#:~:text=XlsxWriter%20es%20una%20API%20de,en%20varias%20hojas%20de%20trabajo
https://products.fileformat.com/es/spreadsheet/python/xlsxwriter/#:~:text=XlsxWriter%20es%20una%20API%20de,en%20varias%20hojas%20de%20trabajo

110

Paguayo. (2022). ¿Que es Raspberry Pi? - Raspberry Pi. Raspberry Pi. https://raspberrypi.cl/que-es-

aspberry/

Pawar, S., Kelkar, S., Khire, N., Khairnar, T. y Kharabe, M. (marzo de 2023). AQI Monitoring and

Predicting System. IEEE. https://doi.org/10.1109/ESCI56872.2023.10099645. In 2023, IEEE

International Conference on Emerging Smart Computing and Informatics (ESCI) (págs. 1-6). IEEE.

Press. Molloy, D. (2019). Raspberry Pi® a fondo para desarrolladores. España: Marcombo.

tkinter — Python interface to Tcl/Tk. (n.d.). Python Documentation.

https://docs.python.org/3/library/tkinter.html#architecture

Vila, M., Sancho, M. R., & Teniente, E. (2023, March). Monitoring, IoT Devices, and Semantics.

IEEE. https://doi.org/10.1109/PerComWorkshops56833.2023.10150279. In 2023 IEEE International

Conference on Pervasive Computing and Communications Workshops and other Affiliated Events

(PerCom Workshops) (pp. 309-312). IEEE.

Wright, H. C., Cameron, D. D., & Ryan, A. J. (2022). FoamPi: an open-source Raspberry Pi based

apparatus for monitoring polyurethane foam reactions. HardwareX, 12, e00365.

https://doi.org/10.1016/j.ohx.2022.e00365

https://ieeexplore.ieee.org/xpl/conhome/10099470/proceeding
https://doi.org/10.1109/PerComWorkshops56833.2023.10150279

